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ABSTRACT
Functional magnetic resonance imaging (fMRI) has provided
a window into the brain with wide adoption in research and
even clinical settings. Data-driven methods such as those
based on latent variable models and matrix/tensor factoriza-
tions are being increasingly used for fMRI data analysis.
There is increasing availability of large-scale multi-subject
repositories involving 1,000+ individuals. Studies with large
numbers of data sets promise effective comparisons across
different conditions, groups, and time points, further in-
creasing the utility of fMRI in human brain research. In
this context, there is a pressing need for innovative ideas to
develop flexible analysis methods that can scale to handle
large-volume fMRI data, process the data in a distributed and
policy-compliant manner, and capture diverse global and lo-
cal patterns leveraging the big pool of fMRI data. This paper
is a survey of some of the recent research in this direction.

Index Terms— Functional MRI, data-driven analysis,
large-scale data.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides a
noninvasive window into the brain. The technique has been
widely adopted in research since its inception a couple of
decades ago, and more recently in clinical settings. The most
popular method involves observing the blood oxygenation
level-dependent (BOLD) contrast, where the distinct mag-
netic properties of (de-)oxygenated hemoglobin are exploited.
The premise is that the vascular hemodynamics can be linked
to the brain neural activities with high spatial resolution [1].

Brain regions responsible for specific functions have been
identified by task-based fMRI analysis, where the subjects
perform active tasks or get exposed to sensory stimulations
during the imaging process [2]. More recently, resting-state
fMRI analysis has attracted significant attention, where par-
ticipants do not engage in specific tasks but are instructed
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to rest quietly. Low-frequency synchronous oscillations ob-
served across brain regions in the resting-state time courses
reveal functional connectivity in the brain, often ascribed to
spontaneous cognitive processes [3].

Brain functional networks are, at a high level, relatively
consistent across different healthy subjects and stages of con-
sciousness [4]. On the other hand, significant heterogeneity
exists across different individuals within healthy or patient
groups. The variability in brain functional networks across
subjects is both significant and consistent like fingerprints [5].
Biomarkers of neural connectivity can thus be used to predict
individual differences in various cognitive processes [6].

There exist multiple methods for analyzing resting-state
fMRI datasets. The most straightforward one is to use region-
of-interest (ROI) or seed-based methods, which correlate the
fMRI time courses from predefined ROIs or voxels to ob-
tain functional connectivity maps [7, 8]. Although such ap-
proaches can produce readily interpretable results, they are
hypothesis-driven, and thus their findings are limited by the a
priori definition of the ROIs and seed regions.

An alternative is to adopt a fully multivariate data-driven
paradigm, of which blind source separation (BSS) is a ma-
jor one. Independent component analysis (ICA) is the most
popular way to achieve BSS, which aims at discovering la-
tent factors from a set of measurements such that the factors
have maximal statistical independence. ICA has proven very
useful for fMRI analysis as it can find non-overlapping, tem-
porally consistent brain regions without prior knowledge on
temporal structures [9, 10]. When it comes to analyzing fMRI
data from multiple subjects, the group ICA method has been
widely used. It obtains a decomposition for a common sig-
nal subspace, which can be further used to obtain subject-
specific spatial maps and time courses [11, 12]. Independent
vector analysis (IVA) generalizes ICA to achieve joint decom-
position of multi-subject data and estimates individual mixing
matrices and spatial maps, and better preserves subject vari-
ability as it eliminates the need to define a common group
subspace as in group ICA [13, 14, 15, 16, 17].

More recently, another matrix decomposition approach
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in an alcohol-soaked cloth to help disguise the contents
(Hammersley et al, 1992). BACs were determined immedi-
ately before and after the scan session, using a hand-held
breath meter (Intoximeters Inc.), and subjects were blind to
BACs.
Participants began their test sessions 20min postbever-

age. Each was run in two separate sessions, on two separate
days, randomly, one at each alcohol blood level, always
preceded by a placebo run. Subjects self-rated level of
subjective intoxication on a verbal analog (0–5 point) scale.
A licensed physician oversaw dosing and administration.
Following completion of each scan session, participants
were compensated for their time plus an additional sum
based on their driving performance. This latter amount was
for obeying road rules (eg keeping to posted speed limits).
The Johns Hopkins Medicine Institutional Review Board
approved the protocol, and all participants provided written
informed consent.

Experimental Design

Methods are those described previously in Calhoun et al
(2002). We obtained fMRI scans of subjects as they twice
performed a 10-min task consisting of 1-min epochs of: (a)
an asterisk fixation task, (b) active simulated driving, and
(c) watching a simulated driving scene (while randomly
moving fingers over the controller). Epochs (b) and (c) were
switched in the second run and the order was counter-
balanced across subjects. During the driving epoch,
participants were performing simulated driving using a
modified game pad controller with buttons for left, right,
acceleration, and braking. The paradigm time line is
illustrated in Figure 2. Subjects were instructed to remain
within a predetermined speed range and were compensated
additionally if they successfully achieved this goal.

The simulator used was a commercially available driving
game, Need for Speed IIt (Electronic Arts, 1998). The
controller was shielded in copper foil and connected to a
computer outside the scanner room though a waveguide in
the wall. All ferromagnetic components were removed and
replaced by plastic. An LCD projector outside the scanner
room and behind the scanner projected through another
waveguide to a translucent screen, which the subjects saw
via a mirror, attached to the head coil of the fMRI scanner.
The screen subtended approximately 251 of visual field. The
watching epoch was the same for all subjects (a playback of
a previously recorded driving session). For the driving
epoch, subjects started at the same point on the track with
identical conditions (eg car type, track, traffic conditions).
They were instructed to stay in the right lane, except in
order to pass, to avoid collisions, to stay within a speed
range of 100–140 (the units were not specified), and to drive
normally.

Rating of Driving Performance

As NFS-II allows driving sessions to be played back, two
independent raters, blind to subject identity and experi-
mental condition, separately scored each driving session on
eight parameters. Inter- and intrarater reliability using
intraclass correlation coefficients for those ratings exceeded
0.85 on five randomly chosen subject sessions rated twice,
blind to subject identity. Parameters assessed included
indices of speeding, weaving, collisions, etc as shown in
Figure 3. Ratings of the two independently rated scores were
averaged for each run.

FMRI Data Acquisition

Data were acquired at the FM Kirby Research Center for
Functional Brain Imaging at Kennedy Krieger Institute
on a Philips NT 1.5 Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
scan (TR¼ 500ms, TE¼ 30ms, field of view¼ 24 cm,
matrix¼ 256" 256, slice thickness¼ 5mm, gap¼ 0.5mm)
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Figure 1 Study design. Outline of study design consisting of 2 days with
two scan sessions on each day. Boxes are not proportional to the amount
of time spent on each task.

Figure 2 fMRI-simulated driving paradigm. The paradigm consisted of
10, 1-minute epochs of (a) a fixation target, (b) driving the simulator, and
(c) watching a simulation while randomly moving fingers over the
controller. The paradigm was presented twice changing the order of the
(b) and (c) epochs and counterbalancing the first order across subjects.
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for obeying road rules (eg keeping to posted speed limits).
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performed a 10-min task consisting of 1-min epochs of: (a)
an asterisk fixation task, (b) active simulated driving, and
(c) watching a simulated driving scene (while randomly
moving fingers over the controller). Epochs (b) and (c) were
switched in the second run and the order was counter-
balanced across subjects. During the driving epoch,
participants were performing simulated driving using a
modified game pad controller with buttons for left, right,
acceleration, and braking. The paradigm time line is
illustrated in Figure 2. Subjects were instructed to remain
within a predetermined speed range and were compensated
additionally if they successfully achieved this goal.

The simulator used was a commercially available driving
game, Need for Speed IIt (Electronic Arts, 1998). The
controller was shielded in copper foil and connected to a
computer outside the scanner room though a waveguide in
the wall. All ferromagnetic components were removed and
replaced by plastic. An LCD projector outside the scanner
room and behind the scanner projected through another
waveguide to a translucent screen, which the subjects saw
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watching epoch was the same for all subjects (a playback of
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identical conditions (eg car type, track, traffic conditions).
They were instructed to stay in the right lane, except in
order to pass, to avoid collisions, to stay within a speed
range of 100–140 (the units were not specified), and to drive
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mental condition, separately scored each driving session on
eight parameters. Inter- and intrarater reliability using
intraclass correlation coefficients for those ratings exceeded
0.85 on five randomly chosen subject sessions rated twice,
blind to subject identity. Parameters assessed included
indices of speeding, weaving, collisions, etc as shown in
Figure 3. Ratings of the two independently rated scores were
averaged for each run.

FMRI Data Acquisition

Data were acquired at the FM Kirby Research Center for
Functional Brain Imaging at Kennedy Krieger Institute
on a Philips NT 1.5 Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
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two scan sessions on each day. Boxes are not proportional to the amount
of time spent on each task.

Figure 2 fMRI-simulated driving paradigm. The paradigm consisted of
10, 1-minute epochs of (a) a fixation target, (b) driving the simulator, and
(c) watching a simulation while randomly moving fingers over the
controller. The paradigm was presented twice changing the order of the
(b) and (c) epochs and counterbalancing the first order across subjects.
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Fig. 1. Matrix factorization of fMRI data. The spatial maps of
functional activity and their temporal modulation are given as the
columns of S and A, respectively (·>: transposition).

imposes the notion of sparsity to ensure identifiability, as in
dictionary learning (DL) [18, 19]. The idea is not only intu-
itively appealing in the sense that the simplest explanation is
preferred, but is also attractive from the efficiency viewpoint
of neuronal encoding [20]. More importantly, the model ac-
commodates an overcomplete representation—a representa-
tion that consists of more components than the ambient data
dimension. Thus, the fine-grained variability due to indi-
vidual and group heterogeneity can be captured as long as
the components are distinct and consistently present in the
dataset. A promising idea may be to carefully balance the
statistical diversity from these two sources of statistical prior
information, i.e., independence and sparsity, leveraging their
complementary strengths.

The benefits of fine-grained analysis will be particularly
critical in large-scale studies, involving thousands of subjects,
which is becoming feasible through large-scale repositories
such as the human connectome project (HCP) [21] or the
collaborative informatics and neuroimaging suite (COINS;
http://coins.mrn.org) [22]. There is also a pressing need to
develop scalable analysis platforms linking multi-site reposi-
tories to enable even larger-scale studies. The present paper
is a survey of some of the recent works toward this direction.

The rest of this paper is organized as follows. In Sec. 2,
the data-driven fMRI analysis methods are reviewed. Meth-
ods for group analysis are discussed in Sec. 3. Challenges and
opportunities for large-scale multi-subject fMRI analysis are
surveyed in Sec. 4. The conclusion is provided in Sec. 5.

2. FMRI DATA ANALYSIS METHODS

FMRI data allow us to study hemodynamic changes as a func-
tion of time, during well-defined tasks with on/off periods, as
shown in the box-car time course in Fig. 1, or even during a
resting state. A standard approach for analyzing fMRI data
is to correlate the time-series data with an assumed reference
signal, as in the general linear model (GLM) implemented
in the statistical parametric mapping (SPM) software [23].
However, such an approach is heavily dependent on the re-
liability of the prior information. Many generalizations of
this model-based method have been proposed, typically in-
volving an estimate of the hemodynamic response, which is
known to change depending on the functional areas. Data-
driven methods, on the other hand, minimize the need for such
prior information, and when working with resting-state data,

a model time course to use as a regressor is simply not avail-
able. In this case, the methods based on matrix factorization
have proven very effective as they enable a fully multivariate
analysis of the data as opposed to the seed- and ROI-based
methods. Next, we describe the application of ICA to fMRI
data, as well as of the DL approach, which has been applied
more recently.

2.1. Independent Component Analysis

Statistically motivated methods such as BSS make use of var-
ious statistical properties of the data to achieve matrix factor-
ization. ICA has been the most widely used BSS technique.
By assuming that the observations are a linear mixture of in-
dependent sources/components, ICA can recover the original
sources up to an ordering and scaling ambiguity. Following
the work of McKeown et al. [9], ICA has been widely applied
to fMRI analysis [12, 10]. Spatial ICA can estimate system-
atically non-overlapping, temporally coherent brain regions
without constraining the temporal domain. The spatial ICA
model is shown in Fig. 1, where each row of the observation
matrix is formed by flattening the voxels of the scanned brain
at a given time. The number of time points is typically re-
duced using principal component analysis (PCA) often with
information-theoretic criteria (ITC) to determine the signal
space in which ICA is performed. Since ICA can be cast in
a maximum likelihood framework, ITC-based order selection
is a natural fit [13].

More precisely, the linear mixing model for mixture
x(v) ∈ RN observed over N time points at voxel v is given
in terms of the mixing matrix A ∈ RN×R and R sources
{sr(v)} constituting s(v) := [s1(v), s2(v), . . . , sR(v)]> as

x(v) = As(v), v = 1, 2, . . . , V (1)

which can be written of matrices X := [x(1), . . . ,x(V )] and
S = [s(1), . . . , s(V )]> as X = AS>. Based on the assump-
tion that the source components {sr(v)} are statistically in-
dependent, ICA estimates component vector u(v) via a linear
unmixing matrix W ∈ RR×N as u(v) = Wx(v).

2.2. Dictionary Learning

DL aims at finding in a data-driven manner the set of sub-
spaces that allows a parsimonious representation of a given
dataset. Recently, the DL approach has attracted significant
attention as a tool for fMRI data analysis [24, 25, 26]. The
typical setup of DL for fMRI analysis postulates the linear
mixing model in Fig. 1, with R potentially larger than N ,
allowing overcomplete representation. Sparseness is encour-
aged in the spatial maps S, encoding the notion that the neural
activities are parsimonious and confined to localized brain re-
gions. Specifically, DL for fMRI analysis can be formulated
using the noisy measurement model

x(v) = As(v) + e(v), v = 1, 2, . . . , V (2)
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where A plays the role of the dictionary, {s(v)} are assumed
to be sparse, and e(v) is the noise, typically modeled as inde-
pendent from voxel to voxel. A maximum-likelihood estima-
tion approach is taken in [26], where A and S were estimated
jointly with the noise covariance, and the sparsity level is de-
termined based on the minimum description length (MDL)
criterion thus alleviating the issue with selecting multiple pa-
rameters for the DL decomposition. Additional processing
to prevent strongly correlated time courses may be also use-
ful [24]. It is also worth noting that the sparsity imposed in the
DL framework is tantamount to introducing a super-Gaussian
prior, allowing DL to capture higher-order statistical (HOS)
information as well [27]. The simple Infomax algorithm [28]
has proven very effective for ICA of fMRI data for this sim-
ple reason as the fixed nonlinearity used in Infomax is a good
match for sources with highly super-Gaussian distributions.

3. GROUP ANALYSIS METHODS

Thanks to continued fMRI data collection efforts including
HCP and the growth of data repositories like COINS, there is
increasing availability of large-scale multi-subject datasets in-
volving more than 1000 individuals. We review multi-subject
fMRI data analysis methods with a focus on the ICA and DL-
based approaches.

3.1. ICA for Group Analysis

Multi-set generalizations of ICA include group ICA [11] and
IVA [13, 29]. Group ICA performs ICA on the vertically con-
catenated data. Let Xk ∈ RNk×V be the fMRI dataset for
subject k = 1, . . . ,K spanning Nk time instants and V vox-
els. Group ICA captures a group subspace with spatially in-
dependent (systematically non-overlapping) spatial maps and
time courses. These are then used to back-reconstruct subject-
specific spatial maps Sk and time courses Ak [10, 11].

IVA, on the other hand, admits individual time courses
{Ak} and spatial maps {Sk} by directly generalizing the ICA
model for K datasets, where

Xk = AkS
>
k (or, xk(v) = Aksk(v), v = 1, . . . , V ). (3)

for k = 1, . . . ,K. Then, as shown in Fig. 2, source com-
ponent vector (SCV) s[r](v) ∈ RK for r = 1, 2, . . . , R is
formed by collecting the r-th components of sk(v), k =

1
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Fig. 3. Receiver operating characteristic curves for IVA and group
ICA. IVA leads to better performance in capturing group differences,
especially with increasing group variability compared to group ICA.

1, 2, . . . ,K. The dependence across the multiple datasets are
captured through the definition of a cost function that achieves
a decomposition with maximally independent SCVs. IVA
essentially performs ICA for each dataset Xk, while maxi-
mizing the dependence of the entries within each SCV.

Both ICA and IVA can be formulated using the mutual
information rate [13], which allows maximally exploiting all
available diversity within (in the case of ICA and IVA) and
across (IVA) datasets. Moreover, both group ICA and IVA
provide fully multivariate approaches for multiset data analy-
sis. IVA provides a more flexible approach than group ICA at
the cost of increased computational time by avoiding a rigid
definition of a common subspace, which allows the algorithm
to better capture subject variability as demonstrated by mul-
tiple examples, both with simulated fMRI-like data and with
real data from patients with schizophrenia and stroke [16, 15].
In Fig. 3, IVA is seen to be more effective in capturing differ-
ences in two groups of subjects simulated via SimTB [13, 30].

3.2. DL for Group Analysis

Matrix factorization has been extended for multi-set data fu-
sion. Matrix co-factorization is shown to be effective for an-
alyzing multi-set multi-modal datasets [31, 32, 33]. Some re-
sults on using DL for multi-subject fMRI data analysis were
reported in [34, 35]. One approach is to introduce common
spatial maps S̄ shared across the subjects but allow slight in-
dividual variations [34]. Specifically,

Xk = AkS
>
k + Ek, Sk = S̄ + Fk, k = 1, 2, . . . ,K (4)

where Ek and Fk are Gaussian perturbations. In addition to
sparsity, spatial smoothness can be encouraged on the spatial
map S̄ using a graph Laplacian-based regularizer. However,
in this model, distinct individual subspaces are not jointly
extracted from the data, which may be informative for vari-
ous personalized prediction tasks. An alternative is to respect
variability in different datasets by pursuing a hybrid of DL
and multiset canonical correlation analysis (MCCA) [35],
where individualized factors are obtained for each dataset
while correlations are maximized across the factors in differ-
ent datasets. Note that IVA significantly expands the benefits
of MCCA by taking HOS into account and includes MCCA
as a special case [13].



4. LARGE-SCALE FMRI ANALYSIS: CHALLENGES
AND OPPORTUNITIES

Given that large-scale multi-subject data have become avail-
able across multiple repositories, there is a growing need for
the development of a flexible analysis framework for large-
scale fMRI data that can capture the global traits in brain
activity, while not losing the individual aspects of a given
brain. Accurate estimation of each subject’s functional con-
nectivity allows leveraging large and distributed fMRI repos-
itories while also offering effective comparisons across dif-
ferent conditions, groups, and time points, further increasing
the usefulness of fMRI in brain research. However, there are
challenges associated with analyzing such large-scale data.

4.1. Independence or Sparsity?
A promising idea may be to carefully balance the two sources
of diversity so as to capture the global traits in the brain ac-
tivities robustly, while not losing the local details that entail
the individual/group-specific features. In fact, there has been
a lively debate as to whether ICA indeed leverages source in-
dependence, or rather exploits sparsity, especially in the con-
text of fMRI data analysis [36, 37]. It was argued in [36]
that ICA may be seeking sparsity rather than independence
and thus the success of the ICA methods in fMRI analysis
indicated that sparse representations offer a more promising
framework. Although most of these claims were countered in
a later detailed rebuttal [37], the healthy ingredient in the de-
bate is the finding that both forms of diversity are extremely
valuable for fine-grained flexible fMRI analysis.

To elaborate, it is noted that group ICA provides reli-
able performance in general and also scales well for a siz-
able number of datasets, but uses back-reconstruction to pro-
duce subject-specific spatial maps [38]. In contrast, IVA can
directly produce subject-specific mixing matrices and spatial
maps, and as a result captures subject variability well. How-
ever, IVA incurs a high computational cost, especially when
the goal is to leverage HOS information. On the other hand,
the fine-grained variability from individual heterogeneity can
be extracted using a sparse overcomplete DL framework at
a reasonable computational cost. Therefore, synergistically
combining the strengths of the BSS and DL approaches has
the potential to provide multi-resolution understanding of the
brain’s functional connectivity, encapsulating both the struc-
tures that are globally coherent, as well as the patterns that
emerge at a local scale.

4.2. Multi-site fMRI Data Sharing
For carrying out large-scale fMRI data analysis, it is crucial to
capitalize on the vast collection of datasets that reside in dif-
ferent sites and databases. Although the field of neuroimaging
has been embracing the need for data sharing and now there
are a multitude of data repositories and neuroinformatics con-
sortia, they mainly subscribe to a centralized sharing model,
which entails significant computational and storage require-
ments, lacking scalability. Furthermore, there are regulatory
barriers due to constraints on post-hoc sharing, institutional

review board (IRB) issues, and governmental or proprietary
restrictions that hinder open sharing and collaboration. As
the traditional data usage agreements are extremely diverse
and dataset-dependent, the time frame needed to undergo nec-
essary approval processes often exceeds the feasible research
schedule. Allowing the reuse of datasets collected for past
projects while respecting the participants, principal investiga-
tor permissions, and IRB regulations is critically desired.

A promising alternative is a decentralized sharing model,
where the data themselves are kept at the respective reposi-
tories but local analyses are coordinated so as to achieve the
computational quality on par with what would have been ob-
tained with centrally pooled data. Recent frameworks in this
direction include ViPAR [39], ENIGMA [40], and COIN-
STAC [41]. In particular, COINSTAC encompasses the bene-
fits of the existing successful platforms with numerous added
strengths such as quantifiable privacy assurance, comprehen-
sive preprocessing, and ease of anonymizing data.

4.3. Decentralized Analysis
Under the decentralized data sharing model, decentralized
fMRI data analysis algorithms must be developed. Key issues
include the fidelity of analysis compared to centralized solu-
tions, amount of information exchange between repositories,
parallelism in processing for scalability, privacy/policy com-
pliance for data sharing. A single-shot approach entails indi-
vidual nodes performing local analysis, whose results are then
combined by a fusion site. More accurate results are obtained
by a multi-shot/iterative approach at the expense of multiple
stages of data access and information exchange [41]. A de-
centralized iterative ICA method was tested for temporal ICA
of large-scale multi-subject data in [42]. Computationally
efficient local dimensionality reduction was employed prior
to global DL analysis in [43]. Decentralized DL algorithms
have been developed in different contexts as well [44, 45].

5. CONCLUSION
Data-driven fMRI analysis methods have been reviewed with
a focus on matrix factorization approaches exploiting source
independence and sparsity. ICA captures a variety of statisti-
cal diversity including HOS information and sample depen-
dence. Multi-subject extensions such as group ICA and IVA
can additionally exploit dependence across datasets. Recent
DL-based methods admit overcomplete representations and
have the potential to obtain more detailed component maps.
Joint analysis of multi-subject data using DL is under active
research. A synergistic approach to combine the strengths of
BSS and DL may provide a flexible multi-resolution method
for large-scale fMRI data analysis. Distributed sharing plat-
forms mitigate the barriers for integrative multi-repository
analysis including various regulatory and data sharing re-
strictions. Under such frameworks, managing the disparity
of site-specific preprocessing stages, developing efficient
decentralized processing algorithms, and ensuring policy-
compliant data sharing are important research issues.
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